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Abstract
Machine learning has had a great deal of success in image processing. However, the focus of this work has largely been on
realistic images, ignoring more niche art styles such as pixel art. Additionally, many traditional machine learning models
that focus on groups of pixels do not work well with pixel art, where individual pixels are important. We propose the Pixel
VQ-VAE, a specialized VQ-VAE model that learns representations of pixel art. We show that it outperforms other models in
both the quality of embeddings as well as performance on downstream tasks.
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1. Introduction
Deep neural networks have been used for a variety of
image-related tasks including image generation [1], trans-
formation [2], and translation [3]. However, the majority
of this work focuses on photo-realism while avoiding
other, more unrealistic art styles despite their usage in
popular media. Pixel art is one such art style, charac-
terized by a restricted color palette and discrete visible
blocks of pixels (e.g. far-left of Table 1). Originally cre-
ated for 8- & 16-bit games, pixel art has remained pop-
ular, appearing in games like Minecraft, Pokémon, and
Stardew Valley, as well as animations and webcomics
[4, 5]. Improving our ability to work with pixel art in
ML models could thus impact several domains. More
specifically, this will lead to an improvement in any task
that involves pixel art including generation and transfor-
mation of images in and outside of games.
Prior work on pixel art has focused on specific tasks,

primarily that of image generation [6, 7]. A shared repre-
sentation for pixel art offers value as a common starting
point for different tasks by saving human effort. In ma-
chine learning such representations, known as embed-
dings, are information-rich, multi-dimensional vectors
learned by models for use in downstream tasks. Under-
standably, the vast majority of prior work on learning
embeddings focuses on photorealism, leaving other art
styles, including pixel art, largely unexplored.

In terms of learning embeddings, Variational Auto En-
coders (VAEs) [8] dominate the field due to their excel-
lent representational capabilities [9, 2]. However, the
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generated images can appear blurry and lack detail [10],
although recent work addresses this [11, 12]. Pixel art,
characterized by discrete blocks of pixels, loses this defin-
ing property when the image is blurred. However, for
pixel art, the problem may not be the VAEs themselves.
Rather, Convolutional Neural Networks (CNNs), the back-
bone of many image processing models, process clumps
of neighboring pixels together. This makes it difficult
for such models to precisely target individual pixels in
pixel art. One further complication is that pixel art is
hand-authored and does not use natural images, thus
severely limiting the available data.
We identify two drawbacks with current approaches

for pixel art. First, prior work has approached individual
tasks separately when a common representation could
have been used. Second, CNNs do not natively work
well with pixel art. To address the former, we propose
a novel system to learn high quality representations of
pixel art for use in multiple downstream tasks. For the
latter, we introduce two new enhancements to improve
CNN performance on pixel art.

Our contributions can be summarized as follows:

• We propose the usage of VQ-VAEs [11] to repre-
sent pixel art as a set of discrete embeddings, each
mapped to groups of individual pixels. This focus
on pixels synergizes well with pixel art where
each individual pixel matters.

• We introduce the Pixel VQ-VAE, which uses two
key enhancements, the PixelSight block and the
Adapter layer, to improve performance on pixel
art.

• We evaluate our Pixel VQ-VAE against several
baselines on the quality of embeddings while
also studying its performance on multiple down-
stream tasks.

• We demonstrate the superiority of Pixel VQ-VAE
on pixel art tasks, especially for a high variance
dataset.
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2. Background
In this section we cover prior work on image embedding
approaches, their usage in pixel art as well as an overview
of VQ-VAEs, an important component of our approach.

2.1. Representation in Machine Learning
Variational Auto Encoders (VAEs) [8] are commonly used
to learn representations of content. Known as embed-
dings, these representations have achieved success across
many domains [9]. However, in the case of images, VAEs
tend to produce blurry and unclear outputs [10]. For
pixel art in particular, this is a major problem as hav-
ing discrete, visible pixels is an essential part of the art
style. While several works have demonstrated success
in enhancing the quality of reconstructions, they have
not been adapted to unrealistic art styles such as pixel
art [12, 13].

There are several approaches to image generation that
could be employed for pixel art. The most popular are
Generative Adversarial Networks (GANs) [1] and their
variants that focus on improving the quality of generated
images [14, 3]. These approaches generally require large
corpora of data to achieve good results. However, most
art styles (including pixel art) that don’t use natural im-
ages have far less data available as they are usually hand-
authored. This is further complicated in approaches like
diffusion models [15] which require labeled data. Addi-
tionally, while diffusion models have been used to gen-
erate pixel art, the low resolution and varied structure
of pixel art would make it difficult to generate sprites
for specific games. Another class of image generation
models—PixelCNNs—are auto-regressive in nature. That
is, they generate images one pixel at a time, which makes
their use for pixel art appealing [16, 17]. However, the
learning problem grows more complex due to modeling
relationships both between individual pixels and their
color channels.

2.2. Representation in Pixel Art
Pixel art appears commonly in video games, thus work
on representing video game content often requires rep-
resenting pixel art. The Video Game Level Corpus [18]
represents game levels as a set of discrete symbols. Jad-
hav and Guzdial [19] utilized a VAE to learn embeddings
of game level components. Karth et al. [7] used a VQ-VAE
to learn encodings which were then used for map gen-
eration through a secondary process. These approaches
do not focus directly on pixel art representation. Closer
to our work, González et al. [2] used a VAE to learn
representations of Pokémon art along with associated
gameplay-relevant properties that could then bemodified

to generate new Pokémon. However, this VAE suffered
from the aforementioned blurriness issue.
There are several approaches for tasks we con-

sider downstream to learned embeddings. Both Re-
bouças Serpa and Formico Rodrigues [20], and Poké-
mon2Pokémon [21] used GANs for coloring images. The
former converted 2D line-art of sprites into colored ver-
sions while the latter altered color palettes. Palette
modification is an application of our embeddings that
we demonstrate later in this paper. Horsley and Perez-
Liebana [6] used a DCGAN to generate new characters,
another task we demonstrate. Additionally, while there
are several open-source, unpublished works that work
on Pokémon generation [22, 23], they primarily focus
on the generation aspect and not the representations
themselves.

2.3. VQ-VAE
Similar to a VAE, the Vector Quantized VAE (VQ-VAE)
consists of an encoder, decoder and a latent space. How-
ever, unlike the VAE, it learns a discrete latent space. A
key component to learning this is the presence of a code-
book which maps discrete encodings (integers) to specific
embeddings (vectors) in the latent space. The number
of unique encodings learned is a hyperparameter while
the embeddings are learned while training. The encoder
takes in an image and outputs a grid of high-dimensional
vectors. For each vectors, the closest codebook embed-
ding is identified via a nearest neighbor search and the
corresponding encoding is returned. The decoder con-
verts the resultant grid of encodings back into an image.
We refrain from a more detailed explanation due to space
constraints but encourage readers to refer to the original
paper [11]. Like traditional embedding models [9], a VQ-
VAE is generally used to generate embeddings while a
different model, such as a PixelCNN, uses this represen-
tation as the input to downstream tasks. We note that
due to the discrete nature of the latent space, traditional
methods of analysis such as t-SNE are not very useful.
We use a VQ-VAE as the basis of our work due to a

special property it possesses - a direct correspondence
between individual encodings and patches of pixels in
the final image. This synergizes well with pixel art itself
being composed of discrete blocks of pixels. To the best of
our knowledge, we are the first to leverage this synergy
for pixel art.

3. Pixel VQ-VAE
In this section we introduce our Pixel VQ-VAE, which
makes use of two enhancements over a traditional VQ-
VAE to better represent pixel art. Before we proceed with
a detailed discussion of our enhancements, we overview
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Figure 1: Pixel VQ-VAE Architecture

some relevant properties and hyperparameters. Since
the VQ-VAE performs a nearest neighbor search to dis-
cretize embeddings, it requires that the number of en-
coder output channels be equal to the dimensionality of
the learned embeddings 𝐷. 𝐾 is the number of unique
discrete encodings (integers) associated with those em-
beddings (vectors). Furthermore, we define an additional
hyperparameter 𝑀, the encoding-pixel correspondence.
This parameter is implicitly set via the formula𝑀 = 𝐼/2𝐿
where 𝐼 is the size of the input and 𝐿 is the number of
scaling convolutional blocks in the model. The encoder
outputs embeddings of shape 𝐼 2/𝑀 × 𝐷 which are dis-
cretized into 𝐼 2/𝑀 encodings that are then converted
back into a 𝐼 × 𝐼 × 3 image by the decoder. As an example,
given a 64 × 64 × 3 image, if we set 𝐷 = 32, 𝐾 = 128,
and 𝐿 = 2, then 𝑀 = 16. This gives us 64 ∗ 64/16 = 256
embeddings of dimensionality 32 to represent the entire
image where each embedding corresponds to one of K
(128) discrete encodings. We note that larger values of 𝐿
result in lower values of𝑀. That is, the number of layers
in the model and the number of encodings are inversely
correlated.

We introduce two new enhancements - the “PixelSight”
block and the “Adapter” layer. The PixelSight block uses
1x1 convolutions of stride 1, traditionally used for re-
ducing model complexity [24], as a means of giving the
model an initially granular view of the input so that every
pixel is considered individually. We use this alongside
a batch normalization layer and a ReLU activation. We
note that our PixelSight block is not restricted to only the
VQ-VAE but can be plugged in to improve the pixel art
performance of any convolutional model. Meanwhile, the
Adapter layer solves a problem with the general VQ-VAE
architecture. Specifically, the standard practice when
using convolutional layers is to halve the input size and
double the number of filters at each convolution. How-
ever, since the encoder is restricted to an output dimen-
sionality of 𝐷, the final convolutional layer must have
𝐷 filters. We found that this parameter 𝐷 had signifi-
cant impact on the model. Low values resulted in too
few filters for the model to learn effectively while higher
values led to giant models that had trouble converging.

The Adapter convolutional layer uses a 1x1 with stride 1
like in traditional literature [24] to reduce the number of
filters down to 𝐷 while retaining the remaining shape of
the vector. This allows for the standard approach to be
used for the preceding blocks.

Figure 1 illustrates our general model architecture. The
encoder consists of the PixelSight block, 𝐿 convolutional
blocks, and the Adapter layer. Each of the convolutional
blocks consist of 2x2 convolutional layers with stride
2 like in Horsley and Perez-Liebana [6], González et al.
[2], a batch normalization layer and ReLU activation as
per standard practice. The Adapter layer uses a linear
activation function to leave the embedding space unre-
stricted. We calculate the number of filters for the re-
maining layers such that the final one has 𝐹 filters, with
each preceding one having half as many. The decoder
is a mirrored version of the encoder that starts with the
Adapter layer to increase the number of filters back to 𝐹,
followed by 𝐿 transposed convolutional blocks, a Pixel-
Sight block with a transposed convolutional layer and a
sigmoid activation.

4. Experiments
In this section we describe the implementational details
of our Pixel VQ-VAE and baseline models. To understand
if our work better models pixel art, we compare it against
these baselines on the quality of the learned embeddings.
We also perform an ablation study to validate our en-
hancements. Finally, we verify the usefulness of the
learned embeddings on two common downstream tasks.
We make all code publicly available for reproducibility.1

4.1. Data
All our experiments are performed on a dataset of sprites
compiled from the Pokémon video game series [25]. This
dataset consists of monsters in a wide variety of shape,
size and color, with no consistent features between them.
We chose to use Pokémon not only due to its usage in

1https://github.com/akashsara/fusion-dance
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prior work [26], but also due to the high variance present
in the dataset. This variance is important since many
models are capable of generating consistent structures in
low variance environments but struggle with high vari-
ance. On another pixel art dataset [27] which comprises
of highly consistent images, we found that our method
still resulted in improvements, though to a lesser extent.
We refrain from including these results in this work due
to space constraints.

4.2. Preprocessing
We augment our data like González et al. [2] by using 4
different backgrounds - black & white to handle some
edge cases with some Pokémon, and for the training data
alone, two randomly generated noisy backgrounds as
regularization to help the model learn to ignore the back-
ground. We also perform horizontal flips and 4 random
rotations (up to 30 degrees) in either direction. We ac-
knowledge that these rotations may cause harmful effects
in terms of pixel art style in exchange for a much larger
dataset. However, this trade-off showed a significant im-
provement in all results for all models and we thus retain
it. Due to different games having images of different
sizes, we resized them to 64x64 using bicubic interpola-
tion. While splitting the data, we ensure that no sprites
of the same entity are duplicated in different splits. Our
final dataset has 168,334 training, 3,046 validation and
6,999 test images.

4.3. Training
We train 3 models of decreasing encoding-pixel corre-
spondence by setting 𝑀 = 16, 4, 1 (𝐿 = 2, 1, 0). As this
results in more detail due to the larger number of encod-
ings (𝐼 2/𝑀), we term the three models as Pixel VQ-VAE
LowRes, MedRes and HiRes respectively with a note that
the LowRes model has the most layers (𝐿 = 2) and thus
the most parameters. We empirically determined that
the hyperparameters 𝐾 = 256, 𝐹 = 512, 𝐷 = 32 (MedRes
and HiRes) and 𝐷 = 64 (LowRes) offered the best perfor-
mance while still retaining a low value for 𝐾. All models
use an Adam optimizer with learning rate 0.0001 and
batch size 64. We use a Mean Squared Error (MSE) recon-
struction loss term and train the models to convergence
(25 epochs).

4.4. Baselines
Our first baseline is a standard VAE consisting of a mir-
rored encoder-decoder architecture each with 4 convo-
lutional blocks. We train it to convergence (25 epochs)
using the Adam optimizer with a batch size of 64 and
a default learning rate (0.0001) on the standard training

objective (Mean Squared Error + KL-Divergence). Addi-
tionally, we train and use LowRes and MedRes versions
of a standard VQ-VAE which have none of our enhance-
ments. We note that a HiRes version of the standard
VQ-VAE is not feasible since it requires the number of
scaling convolutional blocks to be 𝐿 = 0. The HiRes
version is only possible for the Pixel VQ-VAE due to the
enhancements we use.

4.5. Embedding Quality
We evaluate all models in terms of MSE and Structural
Similarity Index Metric (SSIM) of their reconstructions
against the ground truth images of the test set. MSE
is a per-pixel loss function which compares every pixel
between the ground truth image and the reconstructed
image while SSIM compares the structural similarity be-
tween two images based on statistical measures. We use
these metrics as they complement each other well. MSE
focuses on individual pixels while ignoring overall im-
age structure while SSIM focuses on the structure of the
image over the specific colors used.

Table 1 gives a visual comparison of the baseline mod-
els and our Pixel VQ-VAE. Visually, all VQ-VAEs surpass
the VAE which is blurry and lacks detail. While both
the VQ-VAEs and our Pixel VQ-VAEs do well, our Pixel
VQ-VAE offers better detailing in the precision of the
color palette. This is evident in Table 2 which compares
the performance of the different models. In all cases our
Pixel VQ-VAE beats the baseline models, especially in
terms of SSIM. Comparing our three Pixel VQ-VAEs, we
see that the MSE is better for models with lower values of
𝑀. However, the MedRes model has a higher SSIM score
than the HiRes version. This is because the HiRes model
has a 1:1 encoding-pixel correspondence. This means
that the model focuses heavily on individual pixels, and
not overall structure. We note that despite this, both
models far outperform all baselines.

Since embeddings represent information about an en-
tity, a good embedding generally exhibits characteristics
of this information in the latent space. This information
can be helpful in downstream tasks [19]. However, for
a VQ-VAE, the latent space cannot be analyzed in the
same manner. This is due to the fact that the learned em-
beddings correspond to individual patches of an image
and not the image as a whole. But this does not mean
that our Pixel VQ-VAE’s embeddings are without use.
Further in this paper we demonstrate the usefulness of
these embeddings in two different downstream tasks.

4.6. Ablation Study
We next demonstrate an ablation study to verify the ef-
fectiveness of the enhancements used in our model. We
compare our model to the baseline VQ-VAE as well as



Table 1
Test set reconstructions of the Pixel VQ-VAE and the baselines. The VQ-VAE HiRes is not included as it cannot exist without
the enhancements introduced in the Pixel VQ-VAE.

Original VAE VQ-VAE Pixel VQ-VAE VQ-VAE Pixel VQ-VAE Pixel VQ-VAE
LowRes LowRes MedRes MedRes HiRes

Table 2
Test set reconstruction metrics. MSE: Lower is better. SSIM:
Higher is better. The VQ-VAE HiRes is not included as it
cannot exist without the enhancements introduced in the
Pixel VQ-VAE.

Model MSE SSIM
VAE 0.01815 0.64272
VQ-VAE LowRes 0.01076 0.60198
Pixel VQ-VAE LowRes 0.01040 0.78669
VQ-VAE MedRes 0.00584 0.63973
Pixel VQ-VAE MedRes 0.00421 0.91210
Pixel VQ-VAE HiRes 0.00070 0.82967

Table 3
Ablation study comparing test set reconstruction metrics.
MSE: Lower is better. SSIM: Higher is better. For HiRes mod-
els, the base VQ-VAE and the Adapter VQ-VAE cannot exist
without further enhancements to the model.

Model Size MSE SSIM
Base VQ-VAE LowRes 0.01076 0.60198
Adapter VQ-VAE LowRes 0.01049 0.77879
PixelSight VQ-VAE LowRes 0.01079 0.79586
Pixel VQ-VAE LowRes 0.01040 0.78669
Base VQ-VAE MedRes 0.00584 0.63973
Adapter VQ-VAE MedRes 0.00489 0.66650
PixelSight VQ-VAE MedRes 0.00504 0.78298
Pixel VQ-VAE MedRes 0.00421 0.91210
PixelSight VQ-VAE HiRes 0.00133 0.73070
Pixel VQ-VAE HiRes 0.00070 0.82967

versions that use only one of our two enhancements. We
denote these as “Base” referring to the baseline, “Adapter”
referring to the use of the Adapter layer alone and “Pix-
elSight” referring to the use of the PixelSight block. We
run this comparison for all versions of the Pixel VQ-VAE
(LowRes, MedRes, HiRes). As described earlier, a HiRes
version of the baseline VQ-VAE cannot exist without our

enhancements. Similarly, the adapter requires at least
one other layer in the model, thus a HiRes Adapter VQ-
VAE does not exist either.

Table 3 compares model performance on MSE and
SSIM. Here, the enhanced VQ-VAEs always do better
than the baseline VQ-VAE. Further, in nearly every case
the Pixel VQ-VAE is the clear winner. The sole exception
is the LowRes model where all three enhanced models
exhibit very similar values. This can be attributed to the
LowRes models having a large encoding-pixel correspon-
dence (𝑀=16). This leads to each individual encoding
corresponding to a larger portion of the final image, thus
leading to less control over the finer aspects. In the more
controlled MedRes and HiRes cases the Pixel VQ-VAE
significantly outperforms the other models.

4.7. Image Generation
Image generation is the most common downstream task
for image embeddings. For our baselines, we use two
common approaches to image generation, namely a VAE
and a DCGAN [6]. We use the same VAE from above
and a standard DCGAN with increased parameters in the
generator to have a similar number of parameters to our
final model. The DCGAN is similar in architecture to
unpublished works that have explored Pokemon genera-
tion [23]. Both models were trained on the same dataset
as our VQ-VAE. As discussed earlier, VQ-VAEs are like
traditional word embedding models in that the model
that learns the embeddings (VQ-VAE) is distinct from the
model that uses the embeddings for downstream tasks.
In our case we use the PixelCNN [16], a common down-
stream model used with VQ-VAEs [11]. Specifically, we
use a Gated Conditional PixelCNN [17] which has several
optimizations for better generation, including conditional
image generation. The final model was trained on the
embeddings generated by the Pixel VQ-VAE and condi-



Table 4
Hand-picked generated samples for each model. All VQ-VAE results are generated from a PixelCNN model trained on the
VQ-VAE embeddings.

VAE DCGAN VQ-VAE Pixel VQ-VAE VQ-VAE Pixel VQ-VAE Pixel VQ-VAE
LowRes LowRes MedRes MedRes HiRes

Table 5
FID of generated images. Lower is better. VQ-VAEs use Pixel-
CNNs (13,444,864 parameters) for generation.

Model Parameters FID Score
VAE 7,680,774 322.746
GAN 15,424,000 101.759
VQ-VAE LowRes 20,998 167.464
Pixel VQ-VAE LowRes 1,413,065 154.735
VQ-VAE MedRes 17,222 118.253
Pixel VQ-VAE MedRes 1,102,121 124.302
Pixel VQ-VAE HiRes 54,313 98.575

tioned on both the Pokémon’s shape attribute and its two
type attributes. These attributes were selected as they
generally affect a Pokémon’s silhouette and colors.
The PixelCNN was trained over 25 epochs with the

Adam optimizer with a learning rate of 0.0001 and a batch
size of 32. It uses 7 gated convolutional layers, each with
256 3x3 filters. We trained one version of this model for
each of our Pixel VQ-VAEs (LowRes, MedRes, HiRes). We
repeat the same procedure with a set of VQ-VAEs without
our enhancements. All the PixelCNN models have the
same architecture and parameters, differing only in the
embeddings they use. For complete fairness, we trained a
PixelCNN model directly on our training dataset (that is,
without using VQ-VAE embeddings) like in VanDenOord
et al. [16]. However, the model failed to converge and
generated only blank images. We suspect that this is due
to the much larger output space in this scenario. For any
given pixel there are 2563 or over 16 million possibilities.
In contrast, even the largest Pixel VQ-VAE has only 𝐾
(256 in our case) possibilities for any given pixel.

Table 5 compares the models in terms of number of
parameters and the Fréchet Inception Distance (FID) [28]
(computed on 10,000 generated images). FID is a metric
that tells us how close a generated sample is to the train-
ing data distribution. This metric was created to compare

photo-realistic images and we use it only in the absence
of a better metric. Table 4 depicts selected outputs from
each model. Our first baseline, the VAE, suffers from
extreme blurriness with no recognizable images whatso-
ever, which its FID score reflects. Although the DCGAN
achieves an FID score close to our best model (Pixel VQ-
VAE HiRes), we see a clear distinction in the generated
images. While the GAN does generate interesting shapes
with a good spectrum of colors, the generated images
no longer retain the pixel art style that we desire. On
the other hand, our Pixel VQ-VAE generates interesting
shapes and employs color gradients while still retaining
the pixel art style. As discussed in the training subsection,
the Pixel VQ-VAE HiRes model has the least parameters
due to the low value of 𝐿. While smaller in comparison
to the GAN, it must be considered in tandem with the
PixelCNN which is responsible for generation. We re-
iterate that a HiRes VQ-VAE cannot exist without our
enhancements. Our Pixel VQ-VAEs have far more param-
eters than the baselines for the same reason. Although
we tried tuning the hyperparameters of the baselines in
order to match the number of parameters, we found that
this led to very poor convergence. Comparing the Pixel
VQ-VAE and the baseline, our Pixel VQ-VAE works better
in the LowRes case while in the MedRes case the VQ-VAE
beats it out by a small margin. Our Pixel VQ-VAE LowRes
and MedRes models are larger than the baselines due to
the addition of the PixelSight block and Adapter layers.
However, taking into consideration both the quality of
the embeddings and the FID scores, our Pixel VQ-VAEs
are the best performing models overall. It is also evident
that none of the generations appear representative of
new Pokémon. Pokémon, due to their high variance, are
difficult to generate. Despite our enhancements to the
VQ-VAE, a PixelCNN is insufficient on its own to com-
pletely solve this task. We provide further examples of
random outputs in the appendix.



Table 6
Sample results for the palette swapping task.

Source Target Hand- Pixel
Image Image Authored VQ-VAE

4.8. Image Transformations
We consider a palette swapping task due to its popular-
ity in prior work [21, 20, 2]. This involves modifying
color palettes of images while retaining their shape and
structure. This is used to generate different variations of
a particular Pokémon, perhaps with different attributes
associated with it. We note that this is a highly subjective
task with no real metrics apart from an eye test. Table
6 shows an example of a hand-crafted [29] color swap
and one generated by our HiRes Pixel VQ-VAE. To obtain
these color swapped images, we first compile frequency
statistics for each image’s encodings. We then swap the
encodings used by the images while retaining the same
frequency statistics to obtain color-swapped images. We
describe this in more detail in the appendix. We note that
despite not performing any special training procedure for
this task, our model is still capable of arriving at a reason-
able approximation of a human-authored image without
ever seeing one. While we leave the implementation
to future work, we believe that achieving near-human
results on this task would be doable.

5. Future Work & Conclusions
Our study has shown that the Pixel VQ-VAE meets or
exceeds the performance of all baselines. This is a promis-
ing start for future approaches into pixel art. We further
identify some limitations and extensions to our work.
First, tasks like image generation do not have specialized
metrics for pixel art. While a full user study is one form
of evaluation, developing a metric is another avenue for
future work. Additionally, while the VQ-VAE worked
quite well, there are several models that build on it that
could be used instead [30, 13]. Finally, there are a number
of other downstream tasks the embeddings could be used
in, such as image classification or entity representations
in reinforcement learning environments.
In this paper we introduced the Pixel VQ-VAE to rep-

resent pixel art as a set of discrete encodings. To the
best of our knowledge this work is the first to leverage
the encoding-pixel correspondence of VQ-VAEs for such
a task. We proved the strength of the Pixel VQ-VAE
against several baselines, illustrated the superior embed-
ding space learned by our model and further demon-
strated the performance of our model on downstream
tasks. Our hope is for this work to act as a starting point
for future forays into pixel art.
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Table 7
Test set reconstruction comparison of the Pixel VAE.

VAE Pixel VAE VQ-VAE Pixel VQ-VAE VQ-VAE Pixel VQ-VAE Pixel VQ-VAE
LowRes LowRes MedRes MedRes HiRes

Table 8
Test set reconstruction metrics. MSE: Lower is better. SSIM:
Higher is better.

Model MSE SSIM
VAE 0.01815 0.64272
Pixel VAE 0.01257 0.74339
VQ-VAE LowRes 0.01076 0.60198
Pixel VQ-VAE LowRes 0.01040 0.78669
VQ-VAE MedRes 0.00584 0.63973
Pixel VQ-VAE MedRes 0.00421 0.91210
Pixel VQ-VAE HiRes 0.00070 0.82967

A. Appendix: Pixel VAE
In addition to our Pixel VQ-VAE, we also tried several
enhancements to the baseline VAE, including the addi-
tion of a PixelSight block. Like the baseline described in
the paper, this model has a mirrored encoder-decoder ar-
chitecture with 4 convolutional blocks. We add an initial
PixelSight block to the start of the encoder and another
PixelSight block with transposed convolutions at the end
of the decoder. In addition, we heavily modified the train-
ing objective. First, we modified the reconstruction loss
to use a combination of the Mean Squared Error (MSE)
and the Structural Similarity Index (SSIM). We reasoned
that MSE, a per-pixel loss function, did not contribute as
much to the structure of the reconstructed image. As such
including the SSIM which focuses purely on the structure
of the image might help in better reconstructions. In an
attempt to give a greater focus to the reconstruction loss,
we also experimented with a weighted KL-Divergence.
After some tuning we found that a weight of 0.1 gave
us the biggest improvement in terms of both MSE and
SSIM. We trained this model for 25 epochs with a batch
size of 64 with the Adam optimizer and a learning rate
of 0.0001. Table 8 compares the results of these improve-
ments against the other baselines as well as our Pixel
VQ-VAE. We see that there is a significant improvement

over the baseline VAE, particularly in the SSIM score.
However, this performance is still much worse than the
VQ-VAEs, especially in terms of the MSE. Table 7 gives a
visual comparison of the same.

B. Appendix: Palette Swap Task
In this section we go into further detail on how we per-
form the palette swapping task. For each image, we first
compile a map of the encodings present in the image in
descending order of the number of their occurrences. We
then simply swap the encodings in order. So image A’s
most frequently used encoding would be image B’s most
frequently used encoding and vice-versa. We note that
this is a simple method of performing this palette swap.
There may be better ways of performing this task that
take into account edge cases. However, we believe that
the examples shown in Table 6 display the utility of our
representation for this task. We further note that this
same methodology can be used to recolor Pokemon to
custom colors by simply mapping the encodings of the
Pokemon to the encodings corresponding to the desired
colors. This does require those colors to be present in our
learned encodings, but this aligns well with the limited
color palette of pixel art.

C. Appendix: Generated Outputs
We include a selection of randomly sampled images gen-
erated by the models described in the image generation
section of the main paper. All VQ-VAEs use a PixelCNN
for generation and all models were trained on the same
dataset. Note that the VQ-VAE models learned to mask
out the noise while the GAN does not.



Figure 2: A comparison of the generated images from our Pixel VQ-VAE against several baselines. We do not include the
LowRes versions of the models due to space constraints. Samples are randomly pulled from 10,000 generated images.
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